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Abstract

Remote sensing provides a viable alternative for mapping vegetation in the Arctic because

it allows for the mapping of discontinuous distribution of cover types over different spatial

scales. In this paper we present a statistical method to map the distribution of important

cover types for the reindeer Rangifer tarandus during summer in northernmost Sweden

using IRS 1D-LISS satellite imagery. We exemplify our method with modeling of the

distribution of snowbed vegetation, the cover type used most intensively by the reindeer in

the study area. An autologistic regression model that incorporates the spatial structure of

the data is used to combine the field data and the satellite image data. The terrain effects in

the satellite image are accounted for in the regressions using a digital elevation model

(DEM). We produced a fine-scaled coverage depicting the probability of occurrence of

snowbed vegetation as a continuous variable at the pixel level. The accuracy of mapping

snowbed vegetation was 69–77%, depending on the data used. We conclude that small-

scale, pixel-wise classification modeling may be useful for depicting sparsely occurring

cover types, some of which may be important determinants of range quality for reindeer.

Introduction

The Scandinavian mountain range contains important summer

ranges for the semidomesticated reindeer Rangifer tarandus. In these

arctic and subarctic areas, the food is composed of different plant

species occurring in diverse vegetation associations. The extent of dif-

ferent vegetation associations and their nutritive value vary in relation

to relief, aspect, edaphic conditions, etc., and as a consequence, cover

types used by the reindeer often have scattered distribution. Small-scale

heterogeneity in vegetation cover is thus an important characteristic of

the summer range and needs to be considered in range quality as-

sessment. Adequate identification of cover types intensively used by

reindeer may also be important in environmental monitoring.

Remote sensing is a potentially powerful tool for environmental

resource mapping in the Arctic because of the area’s large size and

poorly developed infrastructure. The level of spatial distinctiveness and

the spatial distribution of different vegetation associations are issues

that must be considered in mapping vegetation in the Arctic. Early

attempts to map vegetation of interest to reindeer (or caribou) using

satellite imagery in the Arctic involved unsupervised and supervised

classification of Landsat MSS imagery (Öritsland et al., 1980) and

more recently Landsat TM imagery (Spjelkavik and Elvebakk, 1989;

Johansen and Tömmervik, 1990; Colpaert et al., 1995; Jano et al.,

1998; Gould, 2000). Pearce (1991) successfully used SPOT satellite

imagery to map productive sedge meadow vegetation in a matrix of

sparsely vegetated polar desert on Devon Island, Northwest Territories,

Canada. In contrast, Mosbech and Hansen (1994) compared combined

SPOT and Landsat TM satellite imagery and aerial photography for

mapping vegetation on Jameson Land, East Greenland, and found the

satellite classification method to be inadequate for mapping vegetation

occurring in very small patches. Cartographic approaches to mapping

arctic vegetation include 1:60,000 CIR-aerial photography, in which

vegetation units are discriminated to 15-m resolution but displayed

at much larger resolution, e.g., »10 ha (Ihse and Wastensson, 1975).

In conclusion, these approaches typically display vegetation in

discrete classes (polygons) with a spatial resolution (grain size)

larger than the pixel size of Landsat or SPOT satellite imagery.

In this paper we apply logistic regression techniques to map cover

types with small areal extent and scattered distribution. Specifically,

we explore how satellite imagery, digital elevation data, and field data

can be combined to model the distribution of cover types that are

important to the reindeer during summer. The model is then used to

produce a continuous estimate of probability of occurrence at the pixel

level.

Material and Methods

STUDY AREA

The study was done around Abisko, in northernmost Sweden

(688209 N, 188509 E), on the north and the south side of the lake Torne

Träsk (Fig. 1). The area is dominated by subalpine shrub heaths (e.g.,

Empetrum nigrum ssp. hermaphroditum, Betula nana, Arctostaphylos

alpinus, A. uva-ursi, Vaccinium myrtillus, Phyllodoce caerulea, Carex

bigelowii, Juncus trifidus) and open mountain birch forest (Betula

pubescens ssp.). Mean altitude is 724 m a.s.l. (range 349–1365 m),

with the treeline situated »650 m a.s.l. The southern side of the lake

Torne Träsk receives 304 mm of precipitation yr�1 (Alexandersson

et al., 1991) and the north side of the lake twice as much (Sonesson

and Hoogesteger, 1983). The mean annual air temperature in

Abisko is �0.88 C, and the temperature of the warmest month,

July, is 11.08 C (Alexandersson et al., 1991).

SATELLITE AND ANCILLARY DATA

We used an IRS 1D-LISS scene acquired 1 September 1998 (path

17, row 17). The image was orthocorrected to the Swedish National

Grid (RT90) to within .5-pixel accuracy and resampled to 203 20-m

pixels using cubic convolution (OM&M-Observation, Mapping and

Monitoring AB, Stockholm). The IRS 1D is a high-resolution,
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multispectral image acquired from LISS-3 and mounted on an Indian

satellite. The sensor collects radiation in 4 bands: Green (0.52–0.59

lm), Red (0.62–0.68 lm), Near Infrared (NIR) (0.77–0.86 lm), and

Middle Infrared (MIR) (1.55–1.70 lm). The spatial resolution is 23 m

for the first 3 bands and 70 m for the MIR band. Upon acquisition of

the image, the sun elevation was 21 degrees above the horizon, and the

sun azimuth was 163.8 degrees.

The elevation was derived from a digital elevation model (DEM)

with 50-m resolution (National Land Survey) and resampled to 20 3

20 m using cubic convolution. Slope (0–908) and aspect (0–3608) were

extracted from a standard package (ERMapper 6.1). The curvature was

extracted using a program in C that determines the second-order

differentiation of the DEM. The first-order differentiation of the DEM

gives the slope, and the second-order differentiation gives the cur-

vature. The curvature can thus be interpreted as the variance in the

slope, and this measure was found to be highly correlated with rock

outcrops and microtopography (O. Hagner, pers. comm., August

2001). The curvature varies from 20 (concave) to 25 (convex) for the

whole area.

FIELD DATA

Sample plots were laid out systematically on the northern and

southern side of the lake Torne Träsk between 20 June and 2

September 1997. In total, 792 10-m-radius circular sample plots were

positioned with a GPS (Trimble GeoExplorer ver. 2.11). The GPS data

were differentially postprocessed to bring up the positional accuracy

to ,10 m. The sample plots were grouped into clusters of 9, forming

a regular spaced grid of 60 m with clusters located 1 km apart (Fig. 1)

(Dahlberg et al., 1998). In one north-south transect the clusters

consisted of 15 plots, with distance between individual plots ranging

from 30 to 500 m and distance between clusters of 500 m. Occurrence

of reindeer on each sample plot was estimated by means of fecal pel-

let group counts, with 1 group consisting of $10 pellets. We used

occurrence of readily identifiable pellet groups as a binary (0, 1) variable

instead of using the actual number of pellet groups, reasoning that this

approach provides a more stable, albeit conservative, measure of

occurrence due to differences in detectability and decomposition rate

across cover types. The field-sampled area on the northern side of the lake

Torne Träsk is primarily summer and fall grazing ranges for reindeer,

whereas the southern side is used primarily during spring and fall

(County Administration, Norrbotten). The feces count thus represented

the accumulated use of the area by the reindeer over the vegetation

period.

The vegetation cover in each plot was classified according to the

Swedish vegetation map (Liberkartor, 1981).

HABITAT SELECTION BY REINDEER

To derive the cover type most selected by the reindeer in terms of

relative use (occurrence of fecal pellet groups), we employed Manly’s

selectivity index (Manly et al., 1993). This selectivity index can be

described as the likelihood for a particular cover type to be selected,

given that all cover types are equally available. Manly’s selectivity

index has the following form:

ai ¼ ri=ni 1
P

rj

� �
nj

� �
ð1Þ

where

ai¼ selectivity index for cover type i

ri ¼ proportion sample plots of cover type i of all cover types j with

occurrence of fecal pellet groups

ni ¼ proportion of sample plots of cover type i of all cover types j

STATISTICAL MODELING

Exploratory Model Assessment

Large topographic relief in arctic areas may have strong impact

on the distribution of vegetation (Ostendorf and Reynolds, 1998),

and therefore inclusion of a digital elevation model (DEM) was

evaluated as a means to increase the explanatory power of the statis-

tical model. We tested models containing the spectral data and DEM

data separately and in combination. For this purpose, occurrence of

particular cover types was classified as a binary response variable,

FIGURE 1. A schematic map
showing the location of the test
area around the lake Torne Träsk
in northern Sweden and the sam-
pling design and the field plots.
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with plots having ,50% and $50% coverage of the particular cover

type classified as 0 and 1, respectively. We employed multiple

logistic regression analysis with forward stepwise elimination of

the independent variables to derive the most parsimonious model. An

a-level of 0.01 for entrance and removal of the independent vari-

ables was applied. We supplemented this exercise by manually

checking the contribution of the different variables to the logistic

model, paying particular attention to include only interactions in

which first-order variables were significant (Hosmer and Lemeshow,

1989).

In the first model (model 1) all 4 spectral bands and their

interactions were tested. We also tested 2 vegetation indices, the NDVI

and the ratio of Red band (Band 2) to the NIR band (Band 3). The

NDVI is the ratio of the difference to the sum of the NIR band and the

Red band. This vegetation index is a robust spectral measure of the

amount of vegetation present on the ground at a particular pixel.

Because plant pigments such as chlorophyll strongly absorb light in the

visible bands and reflect strongly in the NIR range, indices using those

2 bands are fairly useful for differentiating between vegetation and

other backgrounds, such as bare soil or rocks.

We then developed a model for only the DEM-derived variables

(model 2). The main purpose of exploring this particular model was

to investigate whether the explanatory power of the DEM was good

enough on its own. This gives an indication of the ecological effect of

the terrain over the vegetation (Franklin et al., 1986). Four variables

were tested: the cosine of slope, aspect, elevation, and curvature. The

slope and aspect were cosine-transformed to linearize them, and the

interaction of slope and aspect was used to ensure that the position of

each slope relative to the sun position was unique. The elevation was

rescaled to be of the same order as the curvature in order to reduce the

overall effect of elevation on the model (Hosmer and Lemeshow,

1989). The curvature was used as a measure of microtopography. Last,

we derived a combined model including the spectral data and the

DEM-derived data (model 3), ensuring that the results from the earlier

two models were still valid. We tested the linearity of some of the

partial relationships using the Box-Tidwell approach (Hosmer and

Lemeshow, 1989). This approach adds a term of the form xln(x) to the

model and tests for its significance. If it is significant, a transformation

to linearize this variable x is used, or a number of polynomial terms for

this variable are tested.

All models were parameterized for a random sample of 75% of

all sample plots. For each model we derived the relative operating

characteristic (ROC) curve, i.e., plotting sequentially the fraction of

true and false positive classifications across a range of threshold

probabilities. The ROC curve is a representation of 2 types of

accuracies at different cut-off points. Recall that the output is

a probability, and when converting this probability into presence and

absence, one has to decide on an appropriate cut-off point. This

decision is usually arbitrary, and the ROC curve addresses this

problem. The y-axis represents a measure of the proportion of data

points correctly classified, while the x-axis represents the proportion of

data points incorrectly classified. Swets (1988) found that the best

discrimination index in a range of situations appears to be the area

under the ROC curve expressed as a proportion of the total area of the

unit square defined by the false positive and false true positive axes.

Fielding and Bell (1997) and Pearce and Ferrier (2000) found that this

measurement met the requirements of an unbiased discrimination

index. This index ranges from 0.5 for models with no ability to

discriminate to 1 for models with perfect discrimination. Areas

between 0.5 and 0.7 indicate poor discrimination because the

sensitivity rate (true positive) is not much more than the false positive

rate. Values between 0.7 and 0.9 indicate reasonable discrimination

ability appropriate for many uses, and rates higher than 0.9 indicate

very good discrimination (Swets, 1988).

Elaborating the Final Model

Once the best of the 3 models was estimated, we examined the

autocorrelation in the response variable. A variogram of the response

variable was drawn prior to its being converted into a binary variable

(Fig. 2). As can be seen from the variograms, the correlation between

the response variable and the location of the field data plots is fairly

high for distances up to 2 km. Given that our plots are much closer

together than this, we decided to include a measure of the spatial

correlation in the logistic model.

When a classical regression model is applied to data that exhibit

autocorrelation, the estimation of the parameters is not efficient, and

the estimates of the variances are biased. If the autocorrelation is

positive, the mean square error is underestimated, resulting in an

optimistic measure of fit: R2 is higher than the true value. Furthermore,

the standard errors are underestimated, which will lead to tests of

significance that are misleading. The reverse occurs when the data have

a negative autocorrelation (Upton and Fingleton, 1985; Long, 1998;

Lark, 2000). The same problem plagues logistic regression. This

problem has been addressed by a number of authors who have

proposed the autologistic model (Besag, 1974; Ripley, 1981; Cressie,

1993; Augustin et al., 1996). In this model, the spatial autocorrelation

is represented by an autocovariate, which is a weighted sum of the

neighboring pixel values. The weights selected here are the reciprocal

of the Euclidean distance between two cells.

log
pi

1� pi

� �
¼

P
ai fiðxiÞ þ b auto covi ð2Þ

where

auto covi ¼
Pki

j¼1wij p̂pjPki

j¼1 wg

ð3Þ

wij ¼
1

dij

ð4Þ

where xi represent the explanatory variables, fi are appropriate

transformations, a and b are the parameters that need to be estimated,

ki is a neighborhood around cell i, and dij is the Euclidean distance

between cell i and cell j.

As suggested by Augustin et al. (1996), one can estimate the

autocovariate through an iterative process. A simple logistic regression

is modeled using the data, and the probability of occurrence of

particular cover types is estimated for all cells where no field data exist.

The autocovariate is then estimated, and an autologistic model is fitted

with the autocovariate as an additional explanatory variable. This

FIGURE 2. Variogram of the occurrence of snowbed vegetation in
parts of 10s.
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process is iterated until it converges; in our case this meant con-

vergence in the area under the ROC curve.

Results

HABITAT SELECTION BY REINDEER

Occurrence of reindeer pellet groups (Table 1) showed that

reindeer used snowbed vegetation most. Therefore, we selected

snowbed vegetation for the modeling work. Snowbed vegetation

occurred in 127 of the 792 plots (16%), but because snowbed

vegetation occurred only in plots .700 m a.s.l., we excluded all plots

below this altitude, leaving 398 plots for the analysis. Thus, our

training data set comprised 300 plots and the evaluation data set 98

plots.

EXPLORATORY MODEL ASSESSMENT

Because a binormal model (Pearce and Ferrier, 2000) did not

provide a good fit to our data, we derived the ROC curve by fitting

a polynomial of order 5 through the data. The area under the curve

(AUC) was then obtained by integrating the polynomial function. The

AUC for model 1 and model 2 was 0.727 and 0.688, respectively.

For model 3, i.e., the combined model, the AUC was 0.756. Model

3 combined with the autocovariate (model 4) produced an AUC of

0.771. The ROC curves for all 4 models are overlaid in Figure 3. One

observes that the true positive fraction increases steeply for low cut-off

probabilities, slightly more so for model 4. The corresponding cross-

validated accuracy rates (at a cut-off probability of 0.25) were 67.3,

55.0, 74.5, and 74.5%, respectively. This cut-off probability was deter-

mined based on the prior distribution of snowbed vegetation in the test

area (Hosmer and Lemeshow, 1989).

PARAMETER ESTIMATES AND MODEL EVALUATION

The estimates of the parameters of model 3 and model 4 are listed

in Table 2. Note that an increase in Band 1, Band 3, and Band 4 will

increase the expected probability of snowbed vegetation. Similarly, the

coefficient of NDVI is negative. The parameter estimate for curvature

is also negative, which means snowbed vegetation is more likely in

a concave landscape. Note that no interaction terms were significant.

The contribution of each variable to the overall reduction of the

deviance for each model is given in Table 3. It is clear that the most

important variables are Band 1, Band 3, NDVI, and curvature. The

signs of the variable have not changed, but some slight changes occur

in most of the values of the parameters; some have increased and

others have decreased. These changes are related to how well the

different variables are affected by spatial information. The autoco-

variate term contributes least to the deviance decrease, but it is

significant at the 95% level. The probability surface map correspond-

ing to the autologistic model is given in Figure 4.

Discussion

Although occurring relatively infrequently, we found snowbed

vegetation to be the cover type most intensively used (selected) by

reindeer. By providing highly nutritious food during times when such

foods are in short supply, access to snowbed vegetation may strongly

TABLE 1

Ranking of the 6 cover types most intensively used by reindeer based
on Manly’s selectivity index (a)

Vegetation class

No. of plots

in sample

No. of plots with

pellet groups present a

Moderate snowbed 113 93 0.213

Birch forest—heath type

with lichens 14 9 0.166

Fresh heath 70 44 0.162

Extremely dry heath 32 20 0.161

Dry heath 230 137 0.154

Grass heath 45 25 0.144

FIGURE 3. A combined plot showing the ROC curves of the 4
logistic models tested. Model 1 uses only DEM-derived variables.
Model 2 uses only variables derived from the satellite image, and
model 3 combines these variables. In model 4, the autocovariate is
introduced.

TABLE 2

Estimates and corresponding standard error for the parameters that
are significant at the 95% level for model 3 and model 4, i.e., the
combined spectral and DEM model with and without the spatial

autocovariate, respectively

Model 3 Model 4

Parameter Estimate Standard error Estimate Standard error

Intercept �5.0971 1.8353 �5.8183 1.8145

Band 1 0.0260 0.0704 0.0612 0.0697

Band 3 0.0505 0.0436 0.0268 0.0447

Band 4 0.0465 0.0211 0.0185 0.0236

NDVI �5.4068 4.0270 �8.3660 4.7564

Curvature �0.6128 0.1610 �0.5839 0.1608

Autocov. 1.8979 0.7545

TABLE 3

Deviance analysis for model 3 and model 4, i.e., the combined spectral
and DEM model with and without the spatial autocovariate,

respectively

Model 3 Model 4

Terms

added d.f. Deviance

Residual

deviance Deviance

Residual

deviance

Residual

d.f.

Null 371.46 371.46 299

Band 1 1 38.63 332.83 38.63 332.83 298

Band 3 1 34.72 298.11 34.72 298.11 297

Band 4 1 7.68 290.43 7.68 290.43 296

NDVI 1 24.83 265.60 24.84 265.59 295

Curvature 1 15.83 249.77 15.84 249.75 294

Autocov. 6.48 243.27 293

L. EDENIUS ET AL. / 153

Downloaded From: https://bioone.org/journals/Arctic,-Antarctic,-and-Alpine-Research on 25 May 2024
Terms of Use: https://bioone.org/terms-of-use



affect the well-being of reindeer (Skogland, 1994). Furthermore,

snowbeds function as refuges before snowmelt, from both insect

harassment (Gaare et al., 1975; Downes et al., 1986; Walsh et al.,

1992) and high temperatures (Ion and Kershaw, 1989; Andersen and

Nilsen, 1998). Reindeer select areas containing snowbed vegetation for

a variety of reasons, and the scarcity of such areas may be a limiting

factor in reindeer summer ranges. Furthermore, snowbed vegetation

may be sensitive to high grazing pressure (Virtanen, 2000).

Ferguson (1991) mapped musk-ox (Ovibus moschatus) summer

habitat in Northwest Territories, Canada, using Landsat TM data.

These methods predicted certain cover types with high accuracy, which

was attributed to the spectral distinctiveness of preferred cover types

(graminoid vegetation associations). Snowbed communities can be

envisioned as an upper endpoint along a continuous gradient of the

graminoid-low herbaceous heath community with no distinct lower-

elevation boundary. Still, we found high prediction accuracy, allowing

us to conclude that pixel-wise probability classification methods are

amenable to mapping snowbed vegetation. Because snowbed vegeta-

tion mostly consists of low herbaceous plants, these sites usually do

not have high NDVI values compared to other arctic vegetation types.

Snowbed vegetation is often representative of sites with rapid change

in NDVI values, from bare soil right after snowmelt to rapidly

growing, usually herbaceous vegetation later in the growing season. As

can be observed in Figure 4, the snowbed vegetation cover tends to

cluster in elongated patches of irregular shape and spatial extent.

MODEL EVALUATION

There exist several approaches for modeling data that are spatially

autocorrelated. On the one hand we have regression types techniques

where the spatial autocorrelation can be implicitly (Upton and

Fingleton, 1985) or explicitly (Mardia and Marshall, 1984) modeled.

On the other hand we have geostatistical models, which originated

from the mining industry (Cressie, 1993). However, before one can

choose among such a panoply of statistical tools, one has to make a

decision about the level at which the data can be modeled. One could

consider our data to have 2 hierarchical levels. At the upper level, we

have the original data, with the proportion of snowbed vegetation in

the plot. This proportion varied in parts of 10 from 0 to 100. At the

next level, we have an indicator variable that gives the presence and

absence of snowbed vegetation. Given the amount of data available

and the complexity of the problem, and after preliminary analysis, we

found that we could model only the indicator variable with an

acceptable level of accuracy and stability. Given this decision, the

geostatistical approaches became less attractive since the theory of

indicator kriging is not very well developed (Journel, 1983; Jiménez-

Espinosa and Chica-Olmo, 1999). Furthermore, the autologistic ap-

proach provides an output that is a probability, and the algorithms for

estimating such models are fairly well developed and tested.

The logistic statistical model is a very useful approach for

incorporating data of different types from several sources. The logistic

model was found to be similar to the linear discriminant function

FIGURE 4. A probability sur-
face map of snowbed vegetation de-
rived using the autologistic model
(model 4) for the Torne Träsk study
area. A ceiling at 1335 m a.s.l. was
applied to account for the upper
elevation limit for occurrence of
snowbed vegetation. Likewise,
snow-covered ground was masked
out.
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(Maddala, 1993). Manel et al. (1999) found that logistic regression

outperformed discriminant analysis and artificial neutral networks

when applied to independent data sets. Given the close proximity of

the plots within a cluster and the high correlation between the

neighbors, the autologistic model is useful and performed fairly well.

Including terrain characteristics and ratios of the bands greatly

improved the efficiency of the models. Furthermore, because the

logistic model provides probability of occurrence of snowbed, it acts as

a soft classifier, the results of which can be further improved by some

appropriate postprocessing algorithms (Foody, 2000). Given the

algebraic consequence that space is represented as an additive

covariate, the improvement of the autologistic over the simple logistic

model is mostly observed as a smoothing of the probability image.

This can be observed when transects along the two probability maps

are compared. In Figure 5, we see a difference image for a subset of the

image around the test site, produced by subtracting the probability

maps produced by model 3 and model 4. It should be noted that the

probabilities estimated from model 4 (autologistic model) are always

lower than those produced by model 3 because of the averaging effect

of the autocovariate.

CONCLUSIONS

We developed a probability surface algorithm that proved useful

for mapping a cover type having small areal extent and/or a scattered

distribution. In the future, we hope to examine how pixel-wise

probability classification maps of vegetation cover types can be in-

tegrated with maps based on coarse-scale classifications of mountain

vegetation so as to maximize the information content. This integration

can be particularly useful because coarse-scale classifications exist for

large areas and contain a wealth of information covering the ecoregion

(dominant cover types) (e.g., He et al., 1998). Pixel-wise classification

allows fine-scale assessment of distribution of important vegetation

cover types. Combined with coarse-scale classifications, pixel-wise

classification schemes could be useful for assessing the distribution and

abundance of limiting habitat resources, e.g., for reindeer manage-

FIGURE 5. A view over the
southern portion of the lake
Torne Träsk study area, depict-
ing differences in pixel values
between probability maps pro-
duced by model 3 and model 4.
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ment, and environmental monitoring. Because probability maps do

not depict the exact occurrence of particular cover types but rather

their relative occurrence, they are best suited for landscape-level

assessments (103–104 ha). Deriving fine-scaled probability map sur-

faces requires some amount of field sampling, which may be diffi-

cult to achieve, particularly in remote parts of the Arctic.

On the other hand, to be taken seriously, remote-sensing assess-

ments must be based on solid ground truth data.
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